A Scalable and Adaptable Multiple-Place Foraging Algorithm for Ant-Inspired Robot Swarms

نویسندگان

  • Qi Lu
  • Melanie E. Moses
  • Joshua P. Hecker
چکیده

Individual robots are not effective at exploring large unmapped areas. An alternate approach is to use a swarm of simple robots that work together, rather than a single highly capable robot. The central-place foraging algorithm (CPFA) is effective for coordinating robot swarm search and collection tasks. Robots start at a centrally placed location (nest), explore potential targets in the area without global localization or central control, and return the targets to the nest. The scalability of the CPFA is limited because large numbers of robots produce more inter-robot collisions and large search areas result in substantial travel costs. We address these problems with the multiple-place foraging algorithm (MPFA), which uses multiple nests distributed throughout the search area. Robots start from a randomly assigned home nest but return to the closest nest with found targets. We simulate the foraging behavior of robot swarms in the robot simulator ARGoS and employ a genetic algorithm to discover different optimized foraging strategies as swarm sizes and the number of targets are scaled up. In our experiments, the MPFA always produces higher foraging rates, fewer collisions, and lower travel and search time compared to the CPFA for the partially clustered targets distribution. The main contribution of this paper is that we systematically quantify the advantages of the MPFA (reduced travel time and collisions), the potential disadvantages (less communication among robots), and the ability of a genetic algorithm to tune MPFA parameters to mitigate search inefficiency due to less communication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bee-inspired foraging in an embodied swarm

We show the emergence of Swarm Intelligence in physical robots. We transfer an optimization algorithm which is based on beeforaging behavior to a robotic swarm. In simulation this algorithm has already been shown to be more effective, scalable and adaptive than algorithms inspired by ant foraging. In addition to this advantage, bee-inspired foraging does not require (de-)centralized simulation ...

متن کامل

Bee-inspired foraging in an embodied swarm (Demonstration)

We show the emergence of Swarm Intelligence in physical robots. We transfer an optimization algorithm which is based on beeforaging behavior to a robotic swarm. In simulation this algorithm has already been shown to be more effective, scalable and adaptive than algorithms inspired by ant foraging. In addition to this advantage, bee-inspired foraging does not require (de-)centralized simulation ...

متن کامل

Formica ex Machina: Ant Swarm Foraging from Physical to Virtual and Back Again

Ants use individual memory and pheromone communication to achieve effective collective foraging. We implement these strategies as distributed search algorithms in robotic swarms. Swarms of simple robots are robust, scalable and capable of exploring for resources in unmapped environments. We test the ability of individual robots and teams of three robots to collect tags distributed at random and...

متن کامل

Probabilistic Model Checking of Ant-Based Positionless Swarming

Robot swarms are collections of simple robots cooperating without centralized control. Control algorithms for swarms are often inspired by decentralised problem-solving systems found in nature. In this paper we conduct a formal analysis of an algorithm inspired by the foraging behaviour of ants, where a swarm of flying vehicles searches for a target at some unknown location. We show how both ex...

متن کامل

T-ANT: A Nature-Inspired Data Gathering Protocol for Wireless Sensor Networks

1 Based on " Data dissemination based on ant swarms for wireless sensor networks", by S. Selvakennedy, S. Sinnappan and Yi Shang which appeared in the Consumer Communications and Networking Conference, 2006. © 2006 IEEE. Abstract—There are many difficult challenges ahead in the design of an energy-efficient communication stack for wireless sensor networks. Due to the severe sensor node constrai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1612.00480  شماره 

صفحات  -

تاریخ انتشار 2016